An Analyticity Bound for Two-Dimensional Ising Model at Low Temperature

Pierluigi Contucci ${ }^{1}$

Received May 29, 1995

Abstract

We study the coexistence phase in the two-dimensional Ising model. Optimizing the cluster expansion technique, we are able to prove the phase separation phenomenon, with the Onsager value for the surface tension, in a range $\beta>\bar{\beta}$, where $\bar{\beta}$ estimates from above the critical β within 19% and essentially coincides with the entropic bound.

KEY WORDS: Cluster expansion; polymer systems.

1. INTRODUCTION. MOTIVATIONS AND RESULTS

Knowledge of the two-dimensional Ising model can be considered one of the most satisfactory results in the entire field of statistical mechanics. Nevertheless there are some natural questions not yet solved. For instance, there is no proof that in the "full" coexistence phase range (i.e.,, ${ }^{(1)}$ for $\beta \geqslant \beta_{c}$ and $h=0$) it is possible to control the series expansion for the surface tension and resum it to the well-known Onsager value. ${ }^{(2)}$ One can find in ref. 3 that convergence and analyticity hold for $\beta \geqslant \widetilde{\beta}$, where $\widetilde{\beta}$ is some hundreds of times β_{c}. The quoted work was intended to establish rigorously the coexistence phenomenon in the two-dimensional Ising model for large enough beta, no matter how large; the cluster expansion technique is the main tool used there in the proof of the various theorems and lemmas. A problem emerges naturally: since the radius of convergence of the cluster expansion is a priori bounded in the complex plane only by the critical

[^0]point, is it possible to optimize this technique obtaining a full functional control of the theory in a range so wide as to produce estimates for the critical parameters at least of the right order of magnitude? This work is a first analysis of this question.

As one expects from general considerations, the best one can hope without renormalization group ideas is to obtain the entropic bound for the critical beta.

Our result is $\bar{\beta}=0.52$, which gives an estimate from above of the critical beta ($\simeq 0.44$) to within 19% and of the entropic beta ($\simeq 0.48$) to within 9%. It is clear that in order to go below the entropic bound one has to use renormalization group ideas and, possibly, finite-size conditions; our result is, in some sense, a refined treatment of the "scale one".

We use an optimization procedure first proposed in ref. 4: the Banach structure on which the recursive equations live can be defined with a family of equivalent norms. This degree of freedom can be optimized and produce, in the general context of polymer models, the golden ratio bound (see also refs. 5 and 6). Our main idea is to observe that, when the polymers have a minimum size (volume) greater than 1 (for instance, it is 4 for the selfavoiding contours on square lattices), the same "tuning" of the norm produces a considerable improvement of the bound since it eliminates the first terms in a geometric series. We obtain (Section 2) in this way a wider bound of analyticity for the cluster expansion series; in order to prove the well-known properties for the surface tension in the two-dimensional Ising model inside this wider range of temperature, we give (section 3) a refined proof of the subadditivity property.

2. AN OPTIMIZED NORM FOR CLUSTER EXPANSION

Cluster expansion techniques have been used in many different contexts. In each of them they appear with different and special ad hoc features. A natural process of generalization has been developed in the last decade ${ }^{(7,5)}$ and a kind of axiomatic structure has been singled out. One considers a general polymer model defined by a partition function in a volume V :

$$
\begin{equation*}
Z(V)=\sum_{\substack{\text { polymer } \\ \text { families }}} \prod_{\gamma \in \text { family }} z(\gamma) \tag{2.1}
\end{equation*}
$$

where the function $z(\gamma)$ is the activity of the polymer γ and characterizes the model together with the space on which one performs the sum; this last (which we call \hat{P}) is the space of the words X (finite, nonordered families) in the polymer alphabet $P \equiv\left(\gamma_{1}, \gamma_{2}, \ldots\right)$. The fundamental notion for
polymer models is the notion of incompatibility. One can define it by a reflexive and symmetric relation represented by a characteristic function:

$$
f\left(\gamma, \gamma^{\prime}\right)= \begin{cases}1, & \text { if } \gamma, \gamma^{\prime} \text { compatible } \tag{2.2}\\ 0, & \text { otherwise }\end{cases}
$$

Only families composed of compatible polymers appear in the partition sum. The incompatibility relation introduces the usual graph-theoretic notion for the polymer configurations: the polymers (which are the vertices) are connected by an edge if they are incompatible. It is well known that the classical Mayer expansion deals only with this abstract graphological structure of the polymer families. The cluster expansion technique is a formalism developed in order to obtain a relation between the partition function and its logarithm and to control the sums in the limiting cases. A nice way to handle the nontrivial combinatoric inside is to use the algebraic method ${ }^{(8)}$; the basic object is the truncated function, i.e., the formal logarithm with respect to the convolutory product between functions of polymer configuration:

$$
\begin{equation*}
\left(\phi_{1} * \phi_{2}\right)(X)=\sum_{x_{1}+x_{2}=x} \phi_{1}\left(X_{1}\right) \phi_{2}\left(X_{2}\right) \tag{2.3}
\end{equation*}
$$

The reason for introducing the convolution product is the property

$$
\begin{equation*}
\sum_{X \in P}\left(\phi_{1} * \phi_{2}\right)(X) z^{X}=\left[\sum_{X \in P} \phi_{1}(X) z^{x}\right]\left[\sum_{X \in P} \phi_{2}(X) z^{x}\right] \tag{2.4}
\end{equation*}
$$

which implies

$$
\begin{equation*}
Z=\sum_{X \in \mathcal{P}} \phi(X)=\exp \left[\sum_{X \in \mathcal{P}} \phi^{T}(X)\right] \tag{2.5}
\end{equation*}
$$

It is easy to prove that if ϕ is a hard-core interaction $\phi(X)=z^{X}:=\prod_{\gamma} z(\gamma)$, the truncated function ϕ^{T} admits the explicit formula ${ }^{(3)}$

$$
\begin{equation*}
\phi^{T}(X)=\frac{n(X)}{X!} z^{x} \tag{2.6}
\end{equation*}
$$

where $n(X)=n_{+}(X)-n_{-}(X)$, with $n_{ \pm}(X)$ the number of subgraphs of X which contain an even (resp. odd) number of lines, and $X!=\prod_{\gamma \in X} m(\gamma, X)$!, where $m(\gamma, X)$ counts the multiplicity of the polymer γ in the configuration X. The convergence of the polymer expansion can be controlled with the help of iterative equations of Kirkwood-Salsburg type ${ }^{(3)}$ and optimized following ref. 4. The main idea is that the functional equations live in a

Banach space where the norm is not a priori fixed; this degree of freedom enables us to perform an optimization procedure.

The convergence properties are based on two bounds:
A1 (Entropy Estimate). There exists a constant μ such that

$$
\begin{equation*}
N(\gamma, x) \leqslant|\gamma| \mu^{x} \quad \forall \gamma \in P \tag{2.7}
\end{equation*}
$$

where $|\gamma|$ is the volume of the polymer γ.
A2 (Energy Estimate). There exists a constant $\lambda<1$ such that

$$
\begin{equation*}
|z(\gamma)| \leqslant \lambda^{|\gamma|} \quad \forall \gamma \in P \tag{2.8}
\end{equation*}
$$

where $N(\gamma, x)$ is the number of γ-incompatible polymers in P which have a volume between x and $x+1$. The quantity to control is the correlation function $\varrho(X)$, which is the probability that the polymers in X are present:

$$
\begin{equation*}
\varrho(X)=\frac{\sum_{Y \in P} \phi(X+Y)}{\sum_{Y \in P} \phi(Y)}=\sum_{Y \in P}\left(\phi^{-1} * D_{X} \phi\right)(Y)=\sum_{Y \in P} \Delta_{X}(Y) \tag{2.9}
\end{equation*}
$$

where

$$
\begin{equation*}
D_{X} \phi(Y)=\phi(X+Y) \frac{(X+Y)!}{Y!} \tag{2.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta_{X}(Y)=\left(\phi^{-1} * D_{x} \phi\right)(Y)=\sum_{Y_{1}+Y_{2}=Y} \phi^{-1}\left(Y_{1}\right) \phi\left(X+Y_{2}\right) \tag{2.11}
\end{equation*}
$$

Indicating by Σ^{\prime} a sum over all γ-incompatible families and by $N(X)$ the cardinality of X counted with multiplicity, the recursive equation for $\Delta_{X}(Y)$ is ${ }^{(3)}$

$$
\begin{align*}
\Delta_{y+X}(Y) & =z(\gamma) \sum_{S \subseteq Y}^{\gamma}(-1)^{N(S)} \sum_{Y_{1}+Y_{3}=Y-S} \phi^{-1}\left(Y_{1}\right) \phi\left(X+S+Y_{3}\right) \\
& =z(\gamma) \sum_{S \subseteq Y}^{\gamma}(-1)^{N(S)} \Delta_{X+S}(Y-S) \tag{2.12}
\end{align*}
$$

Following ref. 4, we define the Banach structure by the m-norm depending on an optimization parameter x :

$$
\begin{equation*}
I_{m}(x)=\sup _{\substack{\gamma_{1}, \ldots \gamma_{n} \\ m \geqslant n \geqslant 1}} \sum_{\substack{\mathcal{Y} \\ N(n)=m-n}}\left|\Delta_{\gamma_{1} \ldots . \gamma_{n}}(Y)\right|\left(\lambda^{-1} e^{-x}\right)^{\sum\left|\gamma_{i}\right|} \tag{2.13}
\end{equation*}
$$

With simple manipulations one deduces from (2.12) and from A1, A2 that

$$
\begin{align*}
& \sum_{\substack{Y \\
N(Y)+N(X)=m}}\left|\Delta_{r^{\prime}+X}(Y)\right|\left(\lambda^{-1} e^{-x}\right)^{|y|+|X|} \\
& \leqslant \sum_{\substack{Y \\
N(\gamma)+N(X)=m}} \sum_{S \leq Y}^{\gamma}\left|\Delta_{X+S}(Y-S)\right|\left(\lambda^{-1} e^{-x}\right)^{|\gamma|+|X|} \lambda^{|y|} \\
& \leqslant \sum_{S}^{\gamma} \sum_{\substack{Y \\
N(Y)=m-N(X)}}\left|A_{X+S}(Y-S)\right|\left(\lambda^{-1} e^{-x}\right)^{|X|+|S|} e^{-x|y|}\left(\lambda e^{-x}\right)^{|S|} \\
& \leqslant I_{m}(x) e^{-x|y|} \sum_{S}^{\gamma}\left(\lambda e^{x}\right)^{|S|} \tag{2.14}
\end{align*}
$$

The last sum can be bounded as follows:

$$
\begin{align*}
\sum_{S}^{\gamma}\left(\lambda e^{x}\right)^{|S|} & =\sum_{n \geqslant 1} \frac{1}{n!}\left[\sum_{\sigma \in P}^{\gamma}\left(\lambda e^{x}\right)^{|\sigma|}\right]^{n} \\
& \leqslant \exp \left[|\gamma| \sum_{\mid \geqslant r}\left(\mu \lambda e^{x}\right)^{t}\right]=\exp \left[|\gamma| \frac{\left(\mu \lambda e^{x}\right)^{r}}{1-\mu \lambda e^{x}}\right] \tag{2.15}
\end{align*}
$$

if

$$
\begin{equation*}
\mu \lambda e^{x}<1 \tag{2.16}
\end{equation*}
$$

where r is the minimum size of a polymer. Extending to infinity the previous sum in l corresponds to considering the thermodynamic limit; the resulting estimates are uniform in the volume. Taking the sup over all the X of the formula (2.14) and observing that the sup of the left-hand side is an upper bound for I_{m+1}, we obtain

$$
\begin{equation*}
I_{m+1}(x) \leqslant I_{m}(x) \exp \left[r\left(-x+\frac{\left(\mu \lambda e^{x}\right)^{r}}{1-\mu \lambda e^{x}}\right)\right] \tag{2.17}
\end{equation*}
$$

It is clear that for the m-norm to be a contraction and the expansion to be convergent the argument in the exponential has to be negative:

$$
\begin{equation*}
-x+\frac{\left(\mu \lambda e^{x}\right)^{r}}{1-\mu \lambda e^{x}} \leqslant 0 \tag{2.18}
\end{equation*}
$$

If $r=1$, the optimization in x produces the golden ratio result ${ }^{(4)}$ $x=(\sqrt{5}-1) / 2$; the same result has been obtained with different methods in ref. 5 and more recently in ref. 6 ; it is, so far, the best estimate obtained in so general a context.

Our main observation is that when the polymers have a minimum size greater than 1 the previous bound can be considerably improved by using the same optimizing procedure. In the concrete case of the nonoverlapping contours on square lattices, in fact, the minimum size of a polymer is 4 and we can optimize in x the condition (2.18); it is clear that this will produce good results because it eliminates the first three terms in a geometric sum. We observe that the previous formula can be used to obtain an analyticity bound for every polymer model living on a given lattice; the topological structure of the lattice (in particular the connectivity) is encoded in the value of the constant μ.

The condition (2.18) is not explicitly solvable as in the case $r=1$, but we can optimize the choice of x numerically using, for the low-temperature 2D Ising model where $\lambda=\exp (-2 \beta)$, the value $\mu=3$; one can check by direct computation that the result, after the optimization in x has been performed, is quite insensible to the value of μ.

We have obtained (See Fig. 1) $\bar{\lambda}=0.35$ or, in terms of the inverse temperature

$$
\begin{equation*}
\beta>\bar{\beta}=0.52 \tag{2.19}
\end{equation*}
$$

which can be compared with the golden ratio bound, which gives

$$
\beta>1.04
$$

The $\bar{\beta}$ gives an estimate from above of the critical $\beta\left(\beta_{c} \simeq 0.44\right)$ to within 19%; it is, moreover, interesting to compare this value with (2.16), which gives the "a priori" bound, on the best cluster expansion result, $\tilde{\beta}=0.48$. We approximate it to within 9%.

3. THE SERIES EXPANSION FOR THE SURFACE TENSION IN $\boldsymbol{\beta}>\overline{\boldsymbol{\beta}}$

Finally, we show the absolute convergence, for $\beta \geqslant \bar{\beta}$, of the perturbative series for the surface tension. We follow ref. 3, where the microscopic description of the surface tension is

$$
\begin{equation*}
\tau=\lim _{N \rightarrow \infty} \frac{1}{N} \log \frac{Z_{N}^{+-}(m, \beta)}{Z_{N}^{++}\left(m^{*}, \beta\right)} \tag{3.1}
\end{equation*}
$$

where m^{*} is the value of the spontaneous magnetization, $m=\alpha m^{*}+$ $(1-\alpha)\left(-m^{*}\right), 0<\alpha<1$, and the symbol $+-(++)$ denotes the ensemble with periodic boundary conditions in the horizontal direction and +(resp ++) denotes that in the vertical direction; one of the main results
of ref. 3 is that the limit (3.1) exists and is independent of α. The bounds which can be derived from the cluster expansion method are

$$
\begin{equation*}
\sum_{X}\left|\phi^{T}(\gamma+X)\right| \leqslant a \exp (-b \beta) \exp (-c \beta|\gamma|) \tag{3.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{\substack{X \ni p \\ X i Q}}\left|\phi^{T}(X)\right| \leqslant a^{\prime} \exp \left(-b^{\prime} \beta\right) \exp \left[-c^{\prime} d(p, Q) \beta\right] \tag{3.3}
\end{equation*}
$$

where the a, b etc., are positive constants and $X i Q$ means that the sum has to be performed only over Q-incompatible families; they easily imply that (3.1) can be transformed into a simpler object, and at the end, the surface tension will appear as the thermodynamic limit of a partition function of the ensemble of big contours λ (the ones which turn around the cylinder), each one having a weight of the form $\exp [-2 \beta|\lambda|+v(\lambda, \beta)]$ with $|v(\lambda, \beta)| \leqslant a|\lambda| e^{-b \beta}$, with a, b positive constants. The proof of the existence of the limit (3.1) and its evaluation has to be modified since we are working in a wider range of temperature; we give here new proof of the subadditivity property which is the essential ingredient for our result.

Following ref. 3 , one has

$$
\begin{equation*}
\tau=\lim _{N \rightarrow \infty} N^{-1} \log \sum_{(\lambda)} \exp [-2 \beta|\lambda|-v(\lambda, \beta)] \tag{3.4}
\end{equation*}
$$

where the sum is over the big contours (up to vertical congruence) such that $|\lambda| \leqslant N(1+\beta / \bar{\beta})$ and where

$$
\begin{equation*}
v(\lambda, \beta)=\sum_{X i \lambda} \phi^{T}(X) \tag{3.5}
\end{equation*}
$$

To show that the limit (3.4) exists, we will prove a weak form of the subadditivity property for the function

$$
\begin{equation*}
S_{N}(\beta)=\log \sum_{(\lambda)} \exp [-2 \beta|\lambda|-v(\lambda, \beta)] \tag{3.6}
\end{equation*}
$$

We start by observing that if $\beta>\bar{\beta}$, the λ appearing in the sum has length bounded by $2 N$. This gives us the possibility of finding a column C with the following properties:
(a) The strip of width one immediately to the right of C contains only one horizontal step of λ.
(b) The strip of width $2 N^{1 / 3}$ centered at C contains a portion of λ at most $N^{1 / 2}$ long.

These properties can be proved as follows. Define N_{s} and N_{m} as the number of columns with, respectively, intersection simple or multiple with λ. It is easily seen that a multiple column consumes at least five units in the length of λ; at least three steps are in fact consumed in the horizontal direction and two in the vertical direction in order to connect the horizontal ones. Hence $5 N_{m}+N_{s} \leqslant|\lambda| \leqslant 2_{N}$, which gives $N_{s} \geqslant 3 / 4 N$. This bound, which trivially proves (a), is essential to prove (b). Consider now for each simple step the strip of width $2 N^{1 / 3}$ centered at its left end, and let L be the shortest length of λ contained in any of these strips. Let M be the maximal cardinality of a family of disjoint such strips; it is easy to see that if the strips of this family are widened to $4 N^{1 / 3}$ their union will contain all simple steps. Hence $M \cdot 4 N^{1 / 3} \geqslant N_{s} \geqslant 3 / 4 N$. Moreover, $L M \leqslant|\lambda| \leqslant 2 N$, so $L \leqslant 2 N / M \leqslant 11 N^{1 / 3}<N^{1 / 2}$ if N is large. This proves (b).

Using property (a), we can now construct a mapping F which associates to any pair $\left(\lambda_{N}, \lambda_{N^{\prime}}\right)$ coming from $S_{N}(\beta)$ and $S_{N^{\prime}}(\beta)$ a $\lambda_{N+N^{\prime}}$ in $S_{N+N^{\prime}}(\beta)$; we cut λ_{N} and $\lambda_{N^{\prime}}$ at some C_{N} and $C_{N^{\prime}}$ as described above and join them together in the given order on a cylinder with circumference $N+N^{\prime}$ to a closed path $\lambda_{N+N^{\prime}}$. Property (a) says that the so constructed $\lambda_{N+N^{\prime}}$ is an allowed contour in $S_{N+N^{\prime}}(\beta)$. Considering that the mapping F can have an $N \cdot N^{\prime}$ degeneracy and using property (b), one can prove ${ }^{(3)}$ with cluster expansion techniques that $v(\lambda, \beta)$ is weakly additive:

If $\beta>\bar{\beta}$,

$$
\begin{equation*}
\left|v\left(\lambda_{N+N^{\prime}}, \beta\right)-v\left(\lambda_{N}, \beta\right)-v\left(\lambda_{N^{\prime}}, \beta\right)\right| \leqslant c\left(N^{1 / 2}+N^{1 / 2}\right) \tag{3.7}
\end{equation*}
$$

and hence in the same range

$$
\begin{equation*}
S_{N+N^{\prime}}(\beta)=\left(N N^{\prime}\right)^{-1} \exp \left[-c\left(N^{1 / 2}+N^{1 / 2}\right)\right] S_{N}(\beta) S_{N^{\prime}}(\beta) \tag{3.8}
\end{equation*}
$$

from which the existence and analyticity of the limit (3.4) immediately follows, in the range $\beta>\bar{\beta}$.

4. CONCLUSIONS

The simple result obtained in this work is a first step toward the optimal bound that one expects for the analyticity radius of the expansion series at low temperature in the 2D Ising model.

It is interesting to compare our result with the one obtained in ref. 9. One can find in that reference an elegant theorem which establishes the abstract existence of the limit (3.1) at any value of the temperature simply by using the duality property and the Griffiths inequalities. Our result is in
some sense complementary to that one since we have a complete functional control of the phase equation in a slightly smaller range. More recently ${ }^{(10)}$ it has been proved, with large-deviations methods, that the Wulff bounds on the block spin magnetization hold up to the critical temperature; it would be very interesting to see how this nice result can be proved using cluster expansion and renormalization group methods. The problem, in this language, is to find a resummation algorithm which permits a systematic improvement of the convergence radius up the critical point. Also, it would be interesting to apply our method to different models and different definitions of surface tension ${ }^{(11)}$ and also to the theory of the surface tension proposed in ref. 12; we hope to return to these problems in future work.

ACKNOWLEDGMENTS

I thank G. Gallavotti for having proposed to me the problem treated in this work and for suggested improvements. I also thank E. Olivieri for many interesting discussions on surface separation phenomena and optimization procedures. It is a pleasure to thank F. Cesi and F. Martinelli for many interesting observations and R. Schonmann for pointing out ref. 11 .

REFERENCES

1. A. Messager and S. Miracle-Sole, Equilibrium states of the two dimensional Ising model in the two phase region, Commun. Math. Phys. 40:187-196 (1975).
2. L. Onsager, Crystal statistics. I. A two dimensional model with an order-disorder transition, Phys. Rev. 65:117 (1944)
3. G. Gallavotti, A. Martin-Löf, and S. Miracle-Solé, Some problems connected with the description of coexisting phases at low temperatures in the Ising model, in Statistical Mechanics and Mathematical Problems, A. Lenard, ed. (Springer-Verlag, New York, 1973).
4. E. Olivieri, On a cluster expansion for lattice spin system: A finite-size condition for the convergence, Stat. Phys. 50(5/6):1179-1200 (1988).
5. R. Kotecky and D. Preiss, Cluster expansion for abstract polymer models, Commun. Math. Phys. 103:491-498 (1986).
6. R. L. Dobrushin, Estimates of semiinvariants for the Ising model at low temperatures, ESI preprint 125 (1994).
7. C. Gruber and H. Kunz, General properties of polymer system, Commun. Math. Phys. 22:133-161 (1971).
8. D. Ruelle, Statistical Mechanics (Benjamin, New York, (1987).
9. C. Gruber, A. Hintermann, A. Messager, and S. Miracle-Sole, On the uniqueness of the invariant equilibrium state and surface tension, Commun. Math. Phys. 56:147-159 (1977).
10. D. Ioffe, Large deviations for the 2D ising model: A lower bound without cluster expansion, J. Stat. Phys., to appear.
11. D. B. Abraham, Surface structure and phase transition, in Phase Transition and Critical Phenomena, Vol 10, C. Domb and J. L. Lebowitz, eds. (Academic Press, London, 1987).
12. H. van Beijeren and G. Gallavotti, The phase separation line in the two-dimensional Ising model and its relationship with the nonfree-random-walk problem, Lett. Nuovo Cimento 14:699-703 (1972).

[^0]: ${ }^{1}$ International School for Advanced Studies, I-34014 Trieste, Italy, and Dipartimento di Fisica, Gruppo CAM, Universitá di Roma "La Sapienza," I-00185, Rome, Italy. E-mail: contucci@vaxrom.romal.infn.it, contucci@tsmil9.sissa.it.

