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We study the coexistence phase in the two-dimensional Ising model. Optimizing 
the cluster expansion technique, we are able to prove the phase separation 
phenomenon, with the Onsager value for the surface tension, in a range fl >/~, 
where/~ estimates from above the critical fl within 19% and essentially coincides 
with the entropic bound. 
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1. I N T R O D U C T I O N .  M O T I V A T I O N S  A N D  RESULTS 

Knowledge of  the two-dimensional Ising model can be considered one of  
the most satisfactory results in the entire field of  statistical mechanics. 
Nevertheless there are some natural questions not yet solved. For  instance, 
there is no p roof  that in the "full" coexistence phase range (i.e., ( ,~ for fl/> tic 
and h = 0 )  it is possible to control the series expansion for the surface 
tension and resum it to the well-known Onsager value. 12~ One can find in 
ref. 3 that convergence and analyticity hold for fl/> ]~, where/~ is some hun- 
dreds of  times tic- The quoted work was intended to establish rigorously 
the coexistence phenomenon in the two-dimensional Ising model for large 
enough beta, no matter how large; the cluster expansion technique is the 
main tool used there in the proof  of  the various theorems and lemmas. 
A problem emerges naturally: since the radius of  convergence of  the cluster 
expansion is a pr ior i  bounded in the complex plane only by the critical 
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point, is it possible to optimize this technique obtaining a full functional 
control of the theory in a range so wide as to produce estimates for the 
critical parameters at least of the right order of magnitude? This work is 
a first analysis of this question. 

As one expects from general considerations, the best one can hope 
without renormalization group ideas is to obtain the entropic bound for 
the critical beta. 

Our result is ~--0.52, which gives an estimate from above of the 
critical beta ( - 0.44) to within 19% and of the entropic beta ( ~- 0.48) to 
within 9%. It is clear that in order to go below the entropic bound one has 
to use renormalization group ideas and, possibly, finite-size conditions; our 
result is, in some sense, a refined treatment of the "scale one". 

We use an optimization procedure first proposed in ref. 4: the Banach 
structure on which the recursive equations live can be defined with a family 
of equivalent norms. This degree of freedom can be optimized and produce, 
in the general context of polymer models, the golden ratio bound (see also 
refs. 5 and 6). Our main idea is to observe that, when the polymers have 
a minimum size (volume) greater than 1 (for instance, it is 4 for the self- 
avoiding contours on square lattices), the same "tuning" of the norm 
produces a considerable improvement of the bound since it eliminates the 
first terms in a geometric series. We obtain (Section 2) in this way a wider 
bound of analyticity for the cluster expansion series; in order to prove the 
well-known properties for the surface tension in the two-dimensional Ising 
model inside this wider range of temperature, we give (section 3) a refined 
proof of the subadditivity property. 

2. AN O P T I M I Z E D  N O R M  FOR CLUSTER E X P A N S I O N  

Cluster expansion techniques have been used in many different con- 
texts. In each of them they appear with different and special ad hoc 
features. A natural process of generalization has been developed in the last 
decade t7"5~ and a kind of axiomatic structure has been singled out. One 
considers a general polymer model defined by a partition function in a 
volume V: 

Z(W)= ~ I I  z(y) (2.1) 
polymer 7 ~ family 
families 

where the function z(?) is the activity of the polymer ? and characterizes 
the model together with the space on which one performs the sum; this last 
(which we call 15) is the space of the words X (finite, nonordered families) 
in the polymer alphabet P--(?~,) '2 . . . .  ). The fundamental notion for 
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polymer models is the notion of incompatibility. One can define it by a 
reflexive and symmetric relation represented by a characteristic function: 

, f l ,  if 7, Y' compatible (2.2) 
f(Y, 7 ) = (0, otherwise 

Only families composed of compatible polymers appear in the partition 
sum. The incompatibility relation introduces the usual graph-theoretic 
notion for the polymer configurations: the polymers (which are the ver- 
tices) are connected by an edge if they are incompatible. It is well known 
that the classical Mayer expansion deals only with this abstract graphologi- 
cal structure of the polymer families. The cluster expansion technique is a 
formalism developed in order to obtain a relation between the partition 
function and its logarithm and to control the sums in the limiting cases. 
A nice way to handle the nontrivial combinatoric inside is to use the 
algebraic method(a); the basic object is the truncated function, i.e., the 
formal logarithm with respect to the convolutory product between functions 
of polymer configuration: 

(~b, �9 ~b2)(X) = ~ ~](X,) ~b2(X2) (2.3) 
X~ + X2=X 

The reason for introducing the convolution product is the property 

x~: ~ (~b'*~bz)(X)zX=[x~ qb,(X) zX][Jt_x~: ~ ~b2(X) z x] (2.4, 

which implies 

Z =  Z ~b(X)=exp[ ~ ~br(X)] (2.5) 
x~P X~P J 

It is easy to prove that if ~b is a hard-core interaction ~b(X)= zX: = I-Iy z(7), 
the truncated function ~b r admits the explicit formula (3) 

n( X) zX ~bT(X ") = --~--~-.) (2.6) 

where n ( X ) = n + ( X ) - n _ ( X ) ,  with n• the number of subgraphs of X 
which contain an even (resp. odd) number of lines, and X! = I-[y, x m(7, 110!, 
where m(7, X) counts the multiplicity of the polymer ? in the configura- 
tion X. The convergence of the polymer expansion can be controlled with 
the help of iterative equations of Kirkwood-Salsburg type (3) and optimized 
following ref. 4. The main idea is that the functional equations live in a 
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Banach space where the norm is not a priori fixed; this degree of freedom 
enables us to perform an optimization procedure. 

The convergence properties are based on two bounds: 

A1 ( E n t r o p y  E s t i m a t e ) .  There exists a constant/~ such that 

N(y,x)<.lYlP x Vy~P (2.7) 

where [y[ is the volume of the polymer y. 

A2 ( E n e r g y  E s t i m a t e ) .  There exists a constant s < 1 such that 

Iz(y)l ~<21yl VyeP (2.8) 

where N(y, x) is the number of y-incompatible polymers in P which have 
a volume between x and x + I. The quantity to control is the correlation 
function O(X), which is the probability that the polymers in X are present: 

, .  Z ~ , r  
0 t a ) =  ~ - - - ~ , )  - Z ( r 1 6 2  E Ax(Y) (2.9) 

Y~# Ye# 

where 

Dxr = ~b(X+ Y) ( X +  Y)! (2.10) 
Y! 

and 

Ax(Y) = ( r  * Dxr = ~ r  r  }12) 

YI+ Y2= Y 
(2.11) 

Indicating by ~ "  a sum over all y-incompatible families and by N(X) the 
cardinality of X counted with multiplicity, the recursive equation for Ax(Y) 
is o~ 

z J ~ ' + x ( r ) = z ( ~ )  2 ~ ( - I )N(S}  E ~b-l(yl)~b(X--I-S-{-  Y3) 
S ~ _ Y  Y I +  Y3= Y - - S  

= z(y) ~r  ( - 1 )N(S) A x+ s( Y -  S) (2.12) 
S = _ Y  

Following ref. 4, we define the Banach structure by the m-norm depending 
on an optimization parameter x: 

I,,(x)= sup 
Yl ,-.-, Yn 1* 

m>~n>~l N ( Y ) ~ m - - n  

IA,,,.....~,(Y)I(2-le-") r I~,l (2.13) 
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With simple manipulations one deduces from (2.12) and from AI, A2 that 

[At+ x(Y)l(k-le-"-)  Krl+lx~ 
Y 

N(  Y)  + N ( X ) = m  

< E 
Y 

NI Y )  + N(  X )  = m 

_< r -~E Y. 
S Y 

N ( Y )  = m - N I X )  

<~ I,,(x) e - "  Irl ~ r  (XeX)lSl 
S 

The last sum can be bounded as follows: 

~ r  lAx+s (Y-S) l (A-~e - " )  Irl+l~ k iyl 
S~Y 

[A x +  s (  Y -  S)[( ,~  - l e - " ) l x t  + 1st e - X  Irl(2e-,)rsr 

(2.14) 

[ ]" 1 ~y (2eX)l~l E~'('teX) ~s~= E n! 
S t l>~l  t r ~ P  

(t~),e")" ] exp [ :exp E 
if 

(2.15) 

p2eX< 1 (2.16) 

where r is the minimum size of a polymer. Extending to infinity the pre- 
vious sum in l corresponds to considering the thermodynamic limit; the 
resulting estimates are uniform in the volume. Taking the sup over all the 
X of the formula (2.14) and observing that the sup of the left-hand side is 
an upper bound for I,,+l, we obtain 

(l tAex)" ~ ] 
I.,+ ,(x) <<- l.,(x) exp [ r ( - x  + i ~ j _  l (2.17) 

It is clear that for the m-norm to be a contraction and the expansion to be 
convergent the argument in the exponential has to be negative: 

(tt2eX) r 
- x + - - ~ < 0  (2.18) 

1 - tt2e ~" 

If r =  1, the optimization in x produces the golden ratio result t4> 
x =  ( x / ~ - 1 ) / 2 ;  the same result has been obtained with different methods 
in ref. 5 and more recently in ref. 6; it is, so far, the best estimate obtained 
in so general a context. 
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Our main observation is that when the polymers have a minimum size 
greater than 1 the previous bound can be considerably improved by using 
the same optimizing procedure. In the concrete case of the nonoverlapping 
contours on square lattices, in fact, the minimum size of a polymer is 4 and 
we can optimize in x the condition (2.18); it is clear that this will produce 
good results because it eliminates the first three terms in a geometric sum. 
We observe that the previous formula can be used to obtain an analyticity 
bound for every polymer model living on a given lattice; the topological 
structure of the lattice (in particular the connectivity) is encoded in the 
value of the constant p. 

The condition (2.18) is not explicitly solvable as in the case r = 1, but 
we can optimize the choice of x numerically using, for the low-temperature 
2D Ising model where 2 = e x p  ( -2f l ) ,  the value/~=3;  one can check by 
direct computation that the result, after the optimization in x has been 
performed, is quite insensible to the value of p. 

We have obtained (See Fig. 1) ~.=0.35 or, in terms of the inverse 
temperature 

f l>/~=0.52 (2.19) 

which can be compared with the golden ratio bound, which gives 

fl > 1.04 

The fl gives an estimate from above of the critical fl(flr = 0.44) to within 
19%; it is, moreover, interesting to compare this value with (2.16), which 
gives the "a priori" bound, on the best cluster expansion result, 1~= 0.48. 
We approximate it to within 9%. 

3. T H E  S E R I E S  E X P A N S I O N  FOR THE S U R F A C E  
T E N S I O N  IN I] >~ 

Finally, we show the absolute convergence, for fl/> ]~, of the pertur- 
bative series for the surface tension. We follow ref. 3, where the microscopic 
description of the surface tension is 

Z~r -(m, fl) 
r = lim log (3.1) 

~v-o~ Z ~ + ( m * , f l )  

where m* is the value of the spontaneous magnetization, m = a m * +  
(1 -a)(-m*), 0 < 0r < 1, and the symbol + - ( +  + )  denotes the ensemble 
with periodic boundary conditions in the horizontal direction and + -  
(resp + + ) denotes that in the vertical direction; one of the main results 
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of ref. 3 is that the limit (3.1) exists and is independent of0~. The bounds 
which can be derived from the cluster expansion method are 

and 

I~b r(y + X)I ~< a exp( -bf l )  exp( - c]? I~1) 
X 

(3.2) 

Z I~r(X)l ~ a' exp( -b ' f l )  exp[ -e'd(p, Q) ,8] (3.3) 
X ~p  
XiQ 

where the a, b etc., are positive constants and XiQ means that the sum has 
to be performed only over Q-incompatible families; they easily imply that 
(3.1) can be transformed into a simpler object, and at the end, the surface 
tension will appear as the thermodynamic limit of a partition function of 
the ensemble of big contours 2 (the ones which turn around the cylinder), 
each one having a weight of the form exp[-2]?121+v(2,]?)] with 
Iv(4, ]?)1 ~< a 121e -b#, with a, b positive constants. The proof of the existence 
of the limit (3.1) and its evaluation has to be modified since we are Working 
in a wider range of temperature; we give here new proof of the subadditivity 
property which is the essential ingredient for our result. 

Following ref. 3, one has 

r =  lim N - '  l o g ~  exp[ -2]? 121- v(2,]?)] (3.4) 
N ~  oo (2 )  

where the sum is over the big contours (up to vertical congruence) such 
that 141 ~<N(1 +fl/~) and where 

v(2, f l )=  ~ ~r(X) (3.5) 
Xi). 

To show that the limit (3.4) exists, we will prove a weak form of the sub- 
additivity property for the function 

Su(fl) = log ~ exp[ - 2 f l  141 - v(4, p)]  (3.6) 
(2 )  

We start by observing that if fl > fl, the 4 appearing in the sum has length 
bounded by 2N. This gives us the possibility of finding a column C with the 
following properties: 

(a) The strip of width one immediately to the right of C contains 
only one horizontal step of 4. 

(b) The strip of width 2N ~/3 centered at C contains a portion of 4 at 
most N ~/2 long. 
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These properties can be proved as follows. Define Ns and N,,, as the 
number of columns with, respectively, intersection simple or multiple with 2. 
It is easily seen that a multiple column consumes at least five units in the 
length of 2; at least three steps are in fact consumed in the horizontal direc- 
tion and two in the vertical direction in order to connect the horizontal 
ones. Hence 5N,,+Ns<~I2I<<.2N, which gives N.,.>~3/4N. This bound, 
which trivially proves (a), is essential to prove (b). Consider now for each 
simple step the strip of width 2N ~/3 centered at its left end, and let L be the 
shortest length of ,l contained in any of these strips. Let M be the maximal 
cardinality of a family of disjoint such strips; it is easy to see that if the 
strips of this family are widened to 4N ~/3 their union will contain all 
simple steps. Hence M .  4N ~/3 >_. N,  >1 3/4N. Moreover, L M  <~ I)-I ~< 2N, so 
L<<. 2N/M<<. 11Nl/3 < N ~/2 if N is large. This proves (b). 

Using property (a), we can now construct a mapping F which 
associates to any pair (2,v, 2N,) coming from S,v(fl) and SN,(fl) a 2N+N' in 
SN+N,(P); we cut 2N and 2N, at some CN and CN, as described above and 
join them together in the given order on a cylinder with circumference 
N + N '  to a closed path 2N+N,- Property (a) says that the so constructed 
2N+N' is an allowed contour in SN+ N'(fl)- Considering that the mapping F 
can have an N .  N' degeneracy and using property (b), one can prove 13~ 
with cluster expansion techniques that v(2, fl) is weakly additive: 

If fl>/q, 

IV(2N+N,,fl)--v(2N, fl)--v(2,v,,fl)I<<.c(N1/2+N '~/2) (3.7) 

and hence in the same range 

Su+N,(fl) = (NN')  - l  exp[ - -c (N t/2 + N'I/2)] SN(fl) SN,(fl ) (3.8) 

from which the existence and analyticity of the limit (3.4) immediately 
follows, in the range fl >/~. 

4. C O N C L U S I O N S  

The simple result obtained in this work is a first step toward the 
optimal bound that one expects for the analyticity radius of the expansion 
series at low temperature in the 2D Ising model. 

It is interesting to compare our result with the one obtained in ref. 9. 
One can find in that reference an elegant theorem which establishes the 
abstract existence of the limit (3.1) at any value of the temperature simply 
by using the duality property and the Griffiths inequalities. Our result is in 
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some sense complementa ry  to that  one since we have a complete  functional  
control  of the phase equat ion in a slightly smaller  range. More  recently t ~o~ 
it has been proved,  with large-deviat ions methods,  that  the Wulff  bounds  
on the block spin magnet iza t ion  hold up  to the critical temperature;  it 
would be very interesting to see how this nice result can be proved using 
cluster expansion and renormal iza t ion  group methods.  The problem,  in 
this language, is to find a resummat ion  a lgor i thm which permits  a 
systematic improvement  of  the convergence radius  up the critical point.  
Also, it would be interesting to apply  our  method  to different models  and 
different definitions of  surface tension I ~  and also to the theory of  the 
surface tension proposed  in ref. 12; we hope to return to these problems in 
future work. 
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